万洪走了,既然最终定型生产工艺暂时不需要他考虑,那他就只需把微处理器设计图纸,化为试生产样品就行了。
说起来这也不是简单的事。
他首先要布图,将电路图转化为掩膜,在硅晶片上涂抹光刻胶后用紫外光制出电路图,用物理和化学方法沉积生成电路、晶体管、电阻等各种元器件。而且因为每次只能制造同一种元件,所以以上步骤要重复十次左右,每次都必须非常精确,保证各种元件连接正确。
此外他还要考虑很多东西。
比如这是样品,那公司在定性时到底以品质为主还是以成本为主?万一要求以成本为主,却拿最佳品质样品作参照,这个成本他是绝对降不下来的。如果以品质为主,那制造成本、批量制造数量也就不在他考虑之内,好材料、好设备、复杂技工工艺等等,什么好他就上什么。
要求不同,制备的工艺也不同。用化学蚀刻难以精确控制,但要求低,成本低,能够快速大批量生产。用离子冲击,精度高,但设备也贵、成本高……,等等这些需要考虑的要素还很多,可郭总又不给他一个总纲式的前提要求,全靠他自己判断,这实在是有些难为人。
真发狠起来,实验室少量制作CMOS集成电路他也不是做不来!
到时候公司要以这种芯片为标准,那他只有卷铺盖走人!
他和实验室的同仁们经过讨论,还是决定按照成本最优化、品质最优化、均衡型,一共试制三款共九枚处理器。因为处理器内含核心处理器和协处理器两部分,核心处理器略小一点,协处理器稍大一些,大致等于占了两只集成电路芯片尺寸,九枚处理器恰好占用十八个芯片尺寸,正好将一片硅晶元利用完。
样品制造并不需要多长时间,二十来天时间,他们就拿出了第一批九枚处理器,接下来就是第二批、第三批、第四批……
样品制造出来,这只是工作的开始,接下来还有紧张的测试工作。
他们要通过专用测试仪通过数据接口向处理器内输入各种算法,测试芯片各相关电路是否做出正确反应,要测试芯片各接口电路是否工作正常。整个处理器内大大小小的电路,他们都必须一一测试到位,不敢有丝毫疏忽。
基本的响应测试完毕,接下来是更加严格的图形测试。他们要编制图形程序,测试处理器对复杂数据的运算。这种测试,既有测试仪随机生成的图形,也有人工录入的复杂图形,还有通过程序运算产生的图形数据,每一项都要求完全正确。如果有一项数据不对,他们都需要重新寻找原因,看是芯片制作过程中出现的问题,还是电路本身设计问题,并及时修正。
一忙起来,万洪就忘了别的事情。
在测试过程中,他们体会到了孕育一种新型处理器诞生的快乐。
这种新型处理器,世界上还属首创,从来没有过类似的产品,这种创造历史的快感,一直激励着他们全情投入。
他们也确实为这款处理器优异的性能而感到震惊。
说起来,他们最初对这种混合型并行处理器并没有抱有多大期望。毕竟国内的半导体制造工艺相对落后,哪怕采用了精简指令集来加快运算效率,将处理器硬件功能发挥到极限,他们还是没有太大信心。按他们的估计,这种处理器实际性能应该不会太高,充其量就比8080略高一点,绝对要远远逊色于8088。
毕竟PMOS工艺,那是远远不如CMOS工艺,这是硬件上的绝对落后。
可实际测试过程中,他们被这款混合并行处理器所表现出来的优异性能所震撼。就拿编号3-2成本品质均衡型样品为例,各种精简指令程序运算是那么的快,快到让他们要反复观看测试结果和测试仪器,并多次对测试仪进行检查,以为是仪器出了故障。
编制一段复杂的科学计算程序,并以英特尔新推出的采用CMOS工艺制造、集成2。9万个晶体管的8088为对比对象,两者同时运算这段程序。
测试结果令他们震撼。
科学计算结果,混合并行处理器超越8088百分之三!
混合并行处理器以微弱优势领先!
问题是,混合并行处理器的加工工艺远远差于8088,这个结果就太可怕了!
一个是6000元器件集成度,一个是29000元器件集成度,双方就不在一个水平线上,结果最后测试结果居然还是工艺落后一方获胜。
他们实在无法接受这个结果。
在对两款处理器运算方式进行更加详细的对比研究后,他们恍然大悟:在短小指令的运算中,8088略占优势,硬件性能的优势还是发挥了作用。但在对一段包含各种指令的大型程序进行运算中,超长指令大幅占用8088处理器硬件,大量的指令长期处于排队等待状态。反而是混合并行处理器采用了并行运算,协处理器在运算超长指令的同时,并没有耽误核心处理器对精简指令的处理,两部分运行速度一综合,最终结果就造成混合并行处理器反而超越8088,略微提前完成整个运算。
真是不比不知道,一比吓一跳。
难怪国际上大批科学家在对两种处理器进行分别研究后,齐声呼吁希望大力发展精简指令集计算机,其处理器硬件利用效率确实比复杂架构型处理器快得多!